Chapitre 4

Option BL

EXERCICE 4.1

Soit n un entier supérieur ou égal à 2 et $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.

Soit u l'application définie sur E par :

$$\forall P \in E, \ u(P)(X) = XP(X+1) - (X-1)P(X)$$

- 1.a) Montrer que u est un endomorphisme de E.
- b) Écrire la matrice associée à u dans la base canonique de E.
- 2.a) Déterminer les valeurs propres de u.
- b) L'endomorphisme u est-il diagonalisable? Est-il inversible?
- 3. Soit $k \in [1, n]$ et P_k un polynôme de degré k qui est vecteur propre de u.
- a) Montrer que 0 est racine de P_k .
- b) Déterminer toutes les racines de P_k . En déduire la forme de P_k .
- c) Déterminer une base de vecteurs propres de u.

SOLUTION DE L'EXERCICE 4.1

1.a) L'application u est manifestement linéaire. On doit seulement vérifier le degré de u(P). Or $u(X^k) = X(X+1)^k - (X-1)X^k = X^{k+1} + kX^k + \cdots - X^{k+1} + X^k = (k+1)X^k + \cdots$ ce qui montre que $\deg(u(X^k) = k)$, ceci pour tout $k \in [\![0,n]\!]$.

b) Soit $k \in \llbracket 0, n \rrbracket$. On a u(1) = 1 et pour $k \geqslant 1$, on a :

$$u(X^k) = X(X+1)^k - (X-1)X^k = (k+1)X^k + \sum_{j=0}^{k-2} \binom{k}{j} X^{j+1}$$

La matrice associée à u est triangulaire supérieure avec $1, 2, \ldots, n+1$ sur sa diagonale.

- 2.a)b) L'endomorphisme u admet n+1 valeurs propres distinctes. Il est diagonalisable et inversible puisque 0 n'est pas valeur propre de u.
- 3. a) On a vu que u(1) = 1. La constante P = 1 est vecteur propre de u associé à la valeur propre 1.

Soit P_k de degré $k \ge 1$, polynôme propre. Il est associé à la valeur propre k+1. Donc $XP_k(X+1)-(X-1)P_k(X)=(k+1)P_k(X)$. En évaluant en 0, il vient : $P_k(0)=(k+1)P_k(0)\Rightarrow P_k(0)=0$.

b) En évaluant en -1, il vient : $-P_k(0) + 2P_k(-1) = (k+1)P_k(-1) \Rightarrow P_k(-1) = 0$.

On montre ainsi de suite que $0, -1, \ldots, -k+1$ sont des racines de P_k .

c) Comme $\deg(P_k) = k$, on a $P_k = \lambda_k \prod_{j=0}^{k-1} (X+j)$.

EXERCICE 4.2

Soient f et q les fonctions définies par :

$$\forall x \in]0, 1[\cup]1, +\infty[, \ f(x) = \frac{\ln x}{1-x} \ \text{et} \ \forall x \in]0, +\infty[, \ g(x) = \frac{x}{\mathrm{e}^x - 1}.$$

1. a) Montrer que f se prolonge par continuité en 1 et que g se prolonge par continuité en 0.

Dans la suite, on désigne par f et g les prolongements ainsi obtenus.

- b) Montrer que : $\forall x \ge 0$, on a $0 \le g(x) \le 1$.
- 2. On pose $L(x) = \int_1^x f(t) dt$.
- a) Montrer que L est définie et dérivable sur $]0, +\infty[$.
- b) Montrer que L est définie et continue en 0.
- 3. a) À l'aide du changement de variable $x = -\ln t$, montrer que $L(0) = \int_0^{+\infty} g(x) dx$.
- b) Pour tout entier $k \ge 1$, montrer la convergence de l'intégrale $\int_0^{+\infty} x e^{-kx} dx$ et la calculer.
- c) Pour tout $n \in \mathbb{N}^*$, on admet la convergence de l'intégrale $\int_0^{+\infty} \frac{x e^{-(n+1)x}}{1 e^{-x}} dx$.

Montrer que : $L(0) = \sum_{k=1}^{n} \int_{0}^{+\infty} x e^{-kx} dx + \int_{0}^{+\infty} \frac{x e^{-(n+1)x}}{1 - e^{-x}} dx.$

d) En admettant que $\lim_{n\to+\infty}\int_0^{+\infty}\frac{x\mathrm{e}^{-(n+1)x}}{1-\mathrm{e}^{-x}}\,\mathrm{d}x=0$ et que $\sum_{n=1}^{+\infty}\frac{1}{k^2}=\frac{\pi^2}{6}$, donner la valeur de L(0).

SOLUTION DE L'EXERCICE 4.2

1. a) Soit x au voisinage de 1. On pose x = 1 - h et $\ln x = \ln(1 - h)$. On sait que $\lim_{h \to 0} \frac{\ln(1 - h)}{-h} = 1$. Ainsi $\lim_{x \to 1} \frac{\ln(x)}{x - 1} = -1$. La fonction f se prolonge par continuité en 1 par f(1) = 1.

La fonction f se prolonge par continuité en 1 par f(1) = 1. De la même façon, $\lim_{x\to 0} \frac{\mathrm{e}^x - 1}{x} = 1$. La fonction g se prolonge par continuité en 0 par g(0) = 1.

b) Comme $e^x \ge 1$ pour $x \ge 0$, on obtient $g(x) \ge 0$.

En étudiant la fonction $x \mapsto e^x - x - 1$ (croissante sur \mathbb{R}_+ et nulle en 0), on obtient $g(x) \leq 1$.

- 2. a) La fonction f est continue sur $]0,+\infty[$, donc le théorème fondamental du calcul intégral indique que L est définie et dérivable (de dérivée f) sur $]0,+\infty[$.
- b) La fonction f est continue sur]0,1] donc la convergence de l'intégrale L(0) ne pose problème qu'en 0. Comme $\lim_{t\to 0} t^{1/2} f(t) = 0$, on a $|f(t)| \leqslant \frac{1}{t^{1/2}}$ au voisinage de 0. On conclut par la convergence des intégrales de Riemann.
- 3. a) Par changement de variable $x = -\ln t$ (que l'on fera bien sûr sur un segment), on a :

$$\int_{1}^{0} f(t) dt = \int_{+\infty}^{0} \frac{\ln (e^{-x})}{1 - e^{-x}} (-e^{-x}) dx = \int_{0}^{+\infty} g(x) dx.$$

b) Par intégration par parties sur un segment [0, X] puis en passant à la limite quand X tend vers $+\infty$, on trouve :

$$\int_0^{+\infty} x e^{-kx} dx = \frac{1}{k^2}.$$

c) Pour tout x > 0, par somme des termes d'une suite géométrique de raison différente de 1, on a :

$$x\sum_{k=1}^{n} e^{-kx} = x\frac{e^{-x} - e^{-(n+1)x}}{1 - e^{-x}} = g(x) - \frac{xe^{-(n+1)x}}{1 - e^{-x}}.$$

D'où le résultat voulu en intégrant entre 0 et $+\infty$, par linéarité de l'intégration (tout converge).

d) En passant à la limite quand n tend vers $+\infty$, comme "tout converge", on obtient : $L(0) = \frac{\pi^2}{6}$

EXERCICE 4.3

On effectue une suite de tirages au hasard dans une urne, qui contient initialement une boule blanche et une boule noire, de la manière suivante :

- à chaque tirage d'une boule blanche, on replace cette boule dans l'urne, puis l'on rajoute des boules blanches jusqu'à avoir multiplié par deux le nombre de boules blanches dans l'urne;
- si l'on tire la boule noire, on arrête les tirages.

Ainsi, le nombre de boules blanches dans l'urne est multiplié par deux à chaque étape (sauf la dernière). On admet que l'expérience aléatoire est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) . Pour tout $n \in \mathbb{N}^*$, on note B_n l'événement «les n premiers lancers ne donnent que des boules blanches», et l'on pose $u_n = P(B_n)$.

1. Montrer que la suite (u_n) est convergente.

- 2. Pour tout $n \in \mathbb{N}^*$, montrer que : $P(B_n) = \prod_{k=0}^{n-1} \frac{2^k}{1+2^k}$.
- 3. On note B l'événement «les tirages ne s'arrêtent jamais».
- a) Exprimer B en fonction des B_n .

On admet que : $P(B) = \lim_{n \to +\infty} u_n$.

- b) Pour tout $n \in \mathbb{N}^*$, montrer que : $-\ln(u_n) = \sum_{k=0}^{n-1} \ln(1+2^{-k})$.
- c) Montrer la convergence de la série $\sum_{k\geqslant 0} \ln (1+2^{-k})$.
- d) En déduire que $P(B) \neq 0$.

SOLUTION DE L'EXERCICE 4.3

- 1. Il est clair que $B_{n+1} \subset B_n$, donc par croissance de la probabilité, la suite (u_n) est décroissante. Comme cette suite est minorée par 0, elle converge, d'après le théorème de la limite monotone.
- 2. D'après la formule des probabilités composées, on a :

$$\begin{split} P(B_n) &= P_{B_{n-1}\cap\dots\cap B_1}(B_n) \times P_{B_{n-2}\cap\dots\cap B_1}(B_{n-1}) \times \dots \times P_{B_1}(B_2) \times P(B_1) \\ &= P_{B_{n-1}}(B_n) \times P_{B_{n-2}}(B_{n-1}) \times \dots \times P_{B_1}(B_2) \times P(B_1) \\ &= \frac{2^{n-1}}{1+2^{n-1}} \times \frac{2^{n-2}}{1+2^{n-2}} \times \dots \times \frac{2}{1+2} \times \frac{1}{1+1} \\ &= \prod_{k=0}^{n-1} \frac{2^k}{1+2^k}, \end{split}$$

puisqu'au n-ième tirage l'urne comporte 2^{n-1} boules blanches et une noire.

3. a) On a :
$$B = \bigcap_{n=1}^{+\infty} B_n$$
.

On admet que $P(B) = \lim_{n \to +\infty} P(B_n)$.

b) D'après la question 2, on a :

$$-\ln(u_n) = -\sum_{k=0}^n \ln\left(\frac{2^k}{1+2^k}\right) = \sum_{k=0}^n \ln\left(\frac{1+2^k}{2^k}\right) = \sum_{k=0}^n \ln\left(1+2^{-k}\right).$$

- c) L'inégalité classique : $\forall x > -1$, $\ln(1+x) \le x$, donne : $0 \le \ln\left(1+2^{-k}\right) \le 2^{-k}$. Comme la série géométrique $\sum_{k \ge 0} 2^{-k}$ converge, par théorème de comparaison, il en est de même de la série $\sum_{k \ge 0} \ln\left(1+2^{-k}\right)$.
- d) D'après les deux questions précédentes, on a :

$$\lim_{n \to +\infty} \prod_{k=0}^{n} \frac{2^k}{1+2^k} = \exp\left(\sum_{k=0}^{+\infty} \ln\left((1+2^{-k})\right)\right) = \ell > 0.$$

D'après les questions 2 et 3.a), on a donc : $P(B) = \ell > 0$.

EXERCICE 4.4

- 1. Soit h et k deux fonctions continues sur [a, b] et à valeurs réelles.
- a) En considérant pour tout réel x l'intégrale $\int_a^b (xh(t) + k(t))^2 dt$, établir l'inégalité suivante :

$$\left(\int_{a}^{b}h(t)k(t)dt\right)^{2}\leqslant\int_{a}^{b}\left(h(t)\right)^{2}dt\times\int_{a}^{b}\left(k(t)\right)^{2}dt$$

- b) À quelle condition nécessaire et suffisante cette inégalité est-elle une égalité?
- 2. a) On considère une fonction f de classe C^1 sur [a,b] et à valeurs dans \mathbb{R} . Établir l'inégalité suivante :

$$\forall x \in [a, b], (f(x) - f(a))^2 \leq (x - a) \int_a^x (f'(t))^2 dt$$

b) En déduire l'inégalité :

$$\int_{a}^{b} (f(x) - f(a))^{2} dx \le \frac{(b-a)^{2}}{2} \int_{a}^{b} (f'(t))^{2} dt$$

- 3. a) Utiliser la question précédente pour trouver un majorant de $\int_0^1 (\ln(1+x))^2 dx$.
- b) Calculer $\int_0^1 (\ln(1+x))^2 dx$ et vérifier la majoration précédente (on donne $\ln 2 \approx 0.69$).
- 4. On revient au cas général.

Quelles sont les fonctions pour lesquelles l'inégalité obtenue à la question 2.b) est une égalité?

- 1. a) On développe l'intégrale positive et on obtient un trinôme du second degré en x, dont le discriminant Δ est négatif ou nul, puisque le trinôme reste positif pour tout réel x (intégrale sur [a,b] d'une fonction continue positive).
- b) Il y a égalité si, et seulement si, le discriminant est nul, c'est-à-dire si, et seulement si, il existe x_0 tel que $\int_a^b (x_0 h(t) + k(t))^2 dt = 0$. La fonction en jeu étant continue et positive, cela entraı̂ne qu'elle est identiquement nulle et donc que la famille des deux fonctions (h, k) est liée.
- 2. a) Si x=a, l'inégalité demandée est évidente. Or, f étant de classe C^1 sur \mathbb{R} , on peut écrire

$$f(x) - f(a) = \int_{a}^{x} f'(t)dt$$

puis on peut appliquer l'inégalité précédente aux fonctions $h: t \to f'(t)$ et $k: t \to 1$. On en déduit l'inégalité demandée. b) Comme f'^2 est positive, on peut élargir l'inégalité précédente, soit :

$$(f(x) - f(a))^2 \le (x - a) \int_a^b f'^2(t) dt$$

Il reste à intégrer cette inégalité sur l'intervalle [a, b].

3. a) On choisit a=0,b=1 et $f:x\to \ln(1+x)$ qui est bien C^1 sur [0,1]. La question 2. b) donne alors

$$\int_0^1 (\ln(1+x))^2 dx \leqslant \frac{1}{2} \int_0^1 \frac{dt}{(1+t)^2} = \frac{1}{4}$$

b) On fait une intégration par parties avec des fonctions \mathbb{C}^1 . Il vient :

$$\int_0^1 (\ln(1+x))^2 dx = \left[(1+x) \ln^2(1+x) \right]_0^1 - 2 \int_0^1 \ln(1+x) dx = 2 \ln^2 2 - 2 \int_0^1 \ln(1+x) dx$$

Or

$$\int_{0}^{1} \ln(1+x)dx = \int_{1}^{2} \ln(t)dt = \left[t\ln(t) - t\right]_{1}^{2} = 2\ln 2 - 1$$

Finalement
$$\int_0^1 (\ln(1+x))^2 dx = 2(\ln 2 - 1)^2 < \frac{1}{4}$$
, car $\ln 2 \approx 0.69$

4. La seule façon d'avoir l'égalité, c'est d'être dans le cas d'égalité de la première question, ce qui donne f(x) = mx + p (avec l'argument de continuité de f' qui permet de passer de f'^2 à f'). On trouve ensuite, en remplaçant dans l'inégalité de 2. b), qu'il faut (et c'est bien sûr suffisant) que m = 0. Conclusion : seules les fonctions constantes donnent l'égalité.

EXERCICE 4.5

On pose pour tout x réel : $f(x) = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt$.

On rappelle que pour tout t réel, la dérivée de $t \longmapsto \operatorname{Arctan}(t)$ est $t \longmapsto \frac{1}{1+t^2}$.

1. Pour tout réel $t \in [0,1]$, on considère la fonction g_t définie par :

$$\forall x \in \mathbb{R}, \ g_t(x) = e^{-x(1+t^2)}$$

- a) Montrer que $\forall x \in [-\ln 2, \ln 2], |e^x 1| \leq 2|x|$.
- b) En déduire que la fonction f est continue sur \mathbb{R} (on pourra étudier la limite de f(x+h)-f(x) lorsque h tend vers 0).

c) Montrer que pour tout x > 0, on a :

$$e^{-2x} \int_0^1 \frac{dt}{1+t^2} \le f(x) \le e^{-x} \int_0^1 \frac{dt}{1+t^2}$$

En déduire $\lim_{x \to +\infty} f(x)$.

On admet dans la suite de l'exercice que f est dérivable sur $\mathbb R$ et que pour tout x réel, on a :

$$f'(x) = -\int_0^1 e^{-x(1+t^2)} dt$$

- 2. Pour tout x réel, on pose $u(x) = f(x^2)$ et $\varphi(x) = u(x) + \left(\int_0^x e^{-t^2} dt\right)^2$. Montrer que la fonction φ est constante sur \mathbb{R} et déterminer sa valeur.
- 3. En déduire la valeur de $\int_0^{+\infty} e^{-t^2} dt$.

SOLUTION DE L'EXERCICE 4.5

La fonction f est bien définie sur \mathbb{R} car on intègre une fonction continue sur le segment [0,1].

1. a) Pour démontrer ces inégalités, le plus simple est d'étudier la fonction $x \to e^x - 1 - 2x$ sur $[-\ln 2, \ln 2]$.

b) On écrit:

$$f(x+h) - f(x) = \int_0^1 \frac{e^{-(x+h)(1+t^2)}}{1+t^2} dt - \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} dt = \int_0^1 \frac{e^{-x(1+t^2)}}{1+t^2} \left(e^{-h(1+t^2)} - 1\right) dt$$

Comme $1 + t^2 \in [1, 2]$, pour h assez petit ($|h| \le \ln 2/2$), on a $|h(1 + t^2)| \le \ln 2$ et en appliquant la question précédente, on a :

$$|f(x+h) - f(x)| \le 2|h| \int_0^1 e^{-x(1+t^2)} dt = C_x|h|$$

Ceci montre que f est continue en x.

- c) On utilise encore $1+t^2\in[1,2]$ donc pour $x>0,\ e^{-2x}\leqslant e^{-x(1+t^2)}\leqslant e^{-x}$. On divise ensuite par une quantité strictement positive, puis on utilise la croissance de l'intégrale. Ainsi $\lim_{x\to+\infty}f(x)=0$.
- 2. On calcule la dérivée de φ . D'abord celle de u :

$$u'(x) = 2xf'(x^2) = -2xe^{-x^2} \int_0^1 e^{-x^2t^2} dt = -2e^{-x^2} \int_0^x e^{-v^2} dv$$

Donc,

$$\varphi'(x) = u'(x) + 2e^{-x^2} \int_0^x e^{-t^2} dt = 0$$

et $\varphi = C$. Comme $\varphi(0) = u(0) = f(0) = \pi/4$, il vient pour tout x réel $\varphi(x) = \frac{\pi}{4}$

3. On fait tendre x vers $+\infty$. On a $\lim_{x\to +\infty} u(x) = \lim_{x\to +\infty} f(x) = 0$, donc,

$$\lim_{x \to +\infty} \left(\int_0^x e^{-t^2} dt \right)^2 = \frac{\pi}{4}$$

d'où $\left(\int_0^{+\infty} e^{-t^2} dt\right)^2 = \frac{\pi}{4}$. Par positivité de l'intégrale, on obtient :

$$\int_0^{+\infty} e^{-t^2} dt = \frac{\sqrt{\pi}}{2}$$

EXERCICE 4.6

Soit E un \mathbb{R} -espace vectoriel de dimension finie n=2. Un endomorphisme f non nul de E est dit nilpotent s'il existe un entier k tel que $f^k=0$.

Si f est nilpotent, on appelle indice de nilpotence de f, le plus petit entier p tel que $f^p = 0$ (donc $f^{p-1} \neq 0$). Une matrice de $\mathcal{M}_n(\mathbb{R})$ est dite nilpotente si l'endomorphisme canoniquement associé est nilpotent. On définit de même son indice de nilpotence.

- 1. Dans cette question, on pose $A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)$ et on suppose que A n'est pas la matrice nulle.
- a) Calculer $A^2 (a+d)A$ en fonction de I_2 où I_2 désigne la matrice identité de $\mathcal{M}_2(\mathbb{R})$. On suppose que A est nilpotente.
- b) Montrer que ad bc = 0.
- c) Montrer que a + d = 0.
- d) Déterminer l'indice de nilpotence de A.
- 2. Soit f un endomorphisme de E.
- a) Montrer que si $\text{Im}(f) \subset \text{Ker}(f)$, alors $f^2 = 0$.
- b) Étudier la réciproque.
- c) Soit f un endomorphisme nilpotent non nul de E. Donner la dimension de Im(f) et celle de Ker(f).
- 3. Dans cette question, on suppose que f est un endomorphisme nilpotent et qu'il existe deux endomorphismes u et v de E non nuls et nilpotents tels que $f = u \circ v$.
- a) Montrer que Im(f) = Im(u) et que Ker(v) = Ker(f).
- b) En déduire que Ker(u) = Im(v).
- c) Que peut-on en conclure?

SOLUTION DE L'EXERCICE 4.6

- 1. a) Un calcul élémentaire donne $A^2 (a+d)A + (ad-bc)I_2 = 0$.
- b) Si $ad bc \neq 0$, la matrice A est inversible car $A \times \frac{1}{ad bc}(A (a + d)I_2) = I_2$. Or, si A est nilpotente, si p est son indice de nilpotence et si A^{-1} existe, alors :

$$0 = A^p \Rightarrow 0 = A^{-1}A^p = A^{p-1}$$

ce qui est absurde. Donc, ad - bc = 0.

- c) On a donc $A^2 = -(a+d)A$ et par récurrence, pour tout $n \ge 2$, $A^n = (-1)^{n+1}(a+d)^nA$. Si $a+d \ne 0$, alors, comme $A \ne 0$, pour tout $n \ge 1$, $A^n \ne 0$ en contradiction avec la nilpotence de A. Donc a+d=0.
- d) On a donc $A^2=0$ et $p\leqslant 2$. Mais $p\neq 1$ puisque $A\neq 0$. Donc p=2.
- 2. a) Comme $\text{Im}(f) \subset \text{Ker}(f)$, alors pour tout $x \in E, f(f(x)) = 0$, donc $f^2 = 0$.
- b) Réciproquement si $f^2=0$, pour tout $x\in E, f(f(x))=0$ et $\mathrm{Im}(f)\subset \mathrm{Ker}(f)$.
- c) Le théorème du rang entraı̂ne que $\dim \operatorname{Im}(f) = \dim \operatorname{Ker}(f)$ et par les inclusions précédentes que $\operatorname{Ker}(f) = \operatorname{Im}(f)$. Chaque sous-espace est de dimension 1.
- 3. Les trois endomorphismes f, u et v sont nilpotents sur un espace de dimension 2. On a montré dans les questions précédentes qu'alors $f^2 = u^2 = v^2 = 0$ et que Im(f) = Ker(f), Im(u) = Ker(u) et Im(v) = Ker(v).
- a) Pour tout $x \in E$, f(x) = u(v(x)). Donc $\mathrm{Im}(f) \subset \mathrm{Im}(u)$ et $\mathrm{Ker}(v) \subset \mathrm{Ker}(f)$.

Aucun des trois endomorphismes n'étant nul, on a égalité dans les inclusions précédentes pour des raisons de dimension.

b) Et comme Im(f) = Ker(f), on a

$$Ker(v) = Im(v) = Ker(f) = Im(f) = Im(u) = Ker(u)$$

c) Pour tout $x \in E$, u(v(x)) = 0 par la question précédente et donc f est identiquement nul. Il n'existe donc pas d'endomorphisme u, nilpotent non nul tel que $f = u \circ v$.

EXERCICE 4.7

Soit $(X_k)_{k\geqslant 1}$ une suite de variables aléatoires définies sur un espace probabilisé (Ω, \mathcal{A}, P) , indépendantes suivant toutes la loi uniforme $\mathcal{U}(\llbracket 1, n \rrbracket)$ où n est un entier supérieur ou égal à 2. On considère pour tout $\omega \in \Omega$,

$$T_n(\omega) = \inf\{m \geqslant 1/\{X_1(\omega), \dots, X_m(\omega)\} = \{1, 2, \dots, n\}\},\$$

le plus petit entier m tel que toutes les valeurs de 1 à n sont apparues parmi $X_1(\omega), \ldots, X_m(\omega)$.

1. Soit $k \in [1, n]$. On définit la variable aléatoire τ_k par :

$$\forall \omega \in \Omega, \ \tau_k(\omega) = \inf\{m \geqslant 1 \ / \operatorname{card}(\{X_1(\omega), \dots, X_m(\omega)\}) = k\}$$

En particulier, $\tau_n = T_n$.

Déterminer, pour tout $k \in [2, n]$, la loi de $\tau_k - \tau_{k-1}$.

On admet que les variables aléatoires $(\tau_k - \tau_{k-1})_{1 \le k \le n}$ sont indépendantes.

On suppose désormais que l'entier n n'est plus fixé.

2. a) Calculer l'espérance de T_n .

On admet qu'il existe une constante $\gamma > 0$ telle que :

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma$$

- b) Calculer $\lim_{n \to +\infty} \frac{E(T_n)}{n \ln n}$
- 3. Calculer la variance de T_n et montrer qu'il existe un réel strictement positif a tel que $V(T_n) \leq an^2$.
- 4. Soit $\varepsilon > 0$. Montrer que $\lim_{n \to +\infty} P\left(\left|\frac{T_n}{n \ln n} 1\right| > \varepsilon\right) = 0$.

SOLUTION DE L'EXERCICE 4.7

1. On a $\tau_1 = 1$.

On peut modéliser notre problème (du collectionneur) de la manière suivante :

Une urne contient n boules numérotées de 1 à n. On en tire une avec remise et on note son numéro.

La variable aléatoire $(\tau_k - \tau_{k-1})$ représente le temps d'attente pour obtenir un numéro différent des (k-1) numéros déjà obtenus. Ainsi la loi de cette variable aléatoire est une loi géométrique de paramètre 1 - (k-1)/n (temps d'attente du premier succès).

2. a) On a
$$T_n = \tau_1 + \sum_{k=2}^{n} (\tau_k - \tau_{k-1})$$
 et donc

$$E(T_n) = 1 + \sum_{k=2}^{n} E(\tau_k - \tau_{k-1}) = 1 + \sum_{k=2}^{n} \frac{n}{n+1-k} = 1 + nH_{n-1}$$

où H_n est la somme partielle de la série harmonique; $H_n = \sum_{k=1}^n \frac{1}{k}$. Or, on admet, on sait (ou on démontre...) que

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + o(1)$$

où γ est la constante d'Euler.

- b) On a donc $\lim_{n \to +\infty} \frac{E(T_n)}{n \ln n} = 1$.
- 3. On a, par indépendance admise :

$$V(T_n) = \sum_{k=2}^n V(\tau_k - \tau_{k-1}) = \sum_{k=2}^n n \frac{k-1}{(n+1-k)^2} = \sum_{i=1}^{n-1} n \frac{n-i}{i^2} = n^2 \left(\sum_{i=1}^{n-1} \frac{1}{i^2}\right) - n \left(\sum_{i=1}^{n-1} \frac{1}{i}\right).$$

On a donc $V(T_n) \leqslant n^2 \frac{\pi^2}{6}$.

4. Utilisons l'inégalité de Bienaymé-Tchebychev. Pour $\varepsilon > 0$, on a

$$P(|T_n - E[T_n]| \ge \varepsilon n \log n) \le \frac{V(T_n)}{(\varepsilon n \log n)^2} \le \frac{a}{\varepsilon^2 \log(n)^2} \underset{n \to +\infty}{\longrightarrow} 0$$

On utilise la question 2. b). Pour tout $\varepsilon > 0$ on a $\{|T_n - n\log(n)| \ge 2\varepsilon n\log(n)\} \subset \{|T_n - E(T_n)| \ge \varepsilon n\log(n)\}$ pour n assez grand. Ceci montre que

$$\lim_{n \to +\infty} P\left(\left| \frac{T_n}{n \ln n} - 1 \right| > \varepsilon \right) = 0$$

EXERCICE 4.8

Soient N un entier naturel non nul et (Ω, \mathcal{F}, P) un espace probabilisé. On suppose que toutes les variables aléatoires sont définies sur (Ω, \mathcal{F}, P) et à valeurs dans [0, N].

Si Z est une variable aléatoire à valeurs dans [0, N], on pose :

$$\forall s \in \mathbb{R}, \ G_Z(s) = E(s^Z) = \sum_{k=0}^N P(Z=k)s^k$$

- 1. On suppose que X suit une loi de Bernoulli de paramètre p avec $0 . Déterminer <math>G_X$.
- 2. Montrer que si X et Y sont deux variables aléatoires à valeurs dans [0, N] et $G_X = G_Y$, alors X et Y suivent la même loi.
- 3. Soient X et Y deux variables aléatoires indépendantes à valeurs dans [0, N]. Exprimer G_{X+Y} en fonction de G_X et G_Y .
- 4. Déterminer G_Y lorsque Y suit une loi binomiale de paramètres n et p.
- 5. Pour tout $n \in \mathbb{N}$, donner le développement limité à l'ordre n en 0 de $x \mapsto (1-x)^{-5}$ (on exprimera les coefficients à l'aide des coefficients binomiaux).
- 6. Un éleveur possède 5 lapines. Chacune des lapines engendre un nombre aléatoire de lapins. La lapine numéro i engendre X_i lapins. On suppose que X_1, \ldots, X_5 sont des variables aléatoires indépendantes et de même loi uniforme sur [1, 7]. On note Z le nombre total de lapereaux.
- a) Déterminer une expression simple de G_Z .
- b) En déduire la probabilité que le nombre de lapereaux soit égal à 20.

- 1. Comme $X \sim \mathcal{B}(p)$, alors $G_X(s) = (1-p)s^0 + ps^1 = ps + 1 p$.
- 2. En utilisant la formule de Taylor polynomiale, pour tout entier $n \in [0, N]$, $P(X = n) = \frac{G_X^{(n)}(0)}{n!}$. Ainsi, si $G_X = G_Y$, les dérivées successives sont égales et X et Y ont même loi.
- 3. D'après l'indépendance, $P(X+Y=n)=\sum_{k=0}^n P(X=k)P(Y=n-k)$. Alors,

$$G_{X+Y}(s) = \sum_{n=0}^{2N} \left(\sum_{k=0}^{n} P(X=k)P(Y=n-k) \right) s^{n} = \sum_{n=0}^{2N} \sum_{k=0}^{n} \left(P(X=k)s^{k} \right) \left(P(Y=n-k)s^{n-k} \right)$$
$$= \left(\sum_{k=0}^{N} P(X=k)s^{k} \right) \cdot \left(\sum_{k=0}^{N} P(Y=k)s^{k} \right) = G_{X}(s)G_{Y}(s)$$

On peut également utiliser l'indépendance des fonctions s^X et s^Y .

- 4. Comme Y est binomiale, il existe X_1, \dots, X_n des variables aléatoires de loi de Bernoulli telles que $Y = \sum_{i=1}^n X_i$. En utilisant la question précédente, $G_Y(s) = \prod_{i=1}^n G_{X_i}(s) = (ps+1-p)^n$.
- 5. D'après les développements limités classiques,

$$(1-x)^{-5} = 1 + \sum_{k=1}^{n} \frac{(-5)(-5-1)\cdots(-5-k+1)}{k!} x^{k} + o(x^{n})$$

$$= 1 + \sum_{k=1}^{n} \frac{(k+5-1)!}{4!k!} x^{k} + o(x^{n})$$

$$= \sum_{k=0}^{n} {k+4 \choose k} x^{k} + o(x^{n})$$

6. a) En utilisant l'indépendance des (X_i) et les propriétés précédentes,

$$G_Z(x) = \left(\frac{x + \dots + x^7}{7}\right)^5 = \frac{x^5}{7^5}(1 - x^7)^5(1 - x)^{-5}$$

b) En utilisant la formule du binôme et le développement limité précédent,

$$G_Z(x) = \frac{x^5}{7^5} \left(\sum_{k=0}^5 (-1)^k {5 \choose k} x^{7k} \right) \left(\sum_{k=0}^n {k+4 \choose k} x^k + o(x^n) \right).$$

On recherche le coefficient de x^{20} de G_Z et on obtient, en n'oubliant pas le x^5 en facteur :

$$\frac{\binom{19}{15} - 5\binom{12}{8} + 5\binom{5}{2}}{7^5}$$

EXERCICE 4.9

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{F}, P) . Soit n un entier supérieur ou égal à 2 fixé. On considère une variable aléatoire X_n telle que :

$$X_n(\Omega) = \mathbb{N}^* \text{ et } \forall k \in \mathbb{N}^*, \ P(X_n = k) = a_{k-1} - a_k$$

où pour tout $k \in \mathbb{N}$, $a_k = 1 - \left(1 - \frac{1}{2^k}\right)^{n-1}$.

- 1. a) Montrer que, pour tout s fixé dans \mathbb{N}^* , la série $\sum_k \left(\frac{1}{2^s}\right)^k$ est convergente.
- b) En déduire que la série de terme général a_k est convergente.
- c) Montrer que X_n admet une espérance et que $E(X_n) = \sum_{k=0}^{+\infty} a_k$.
- 2. On admet qu'il existe une constante $\gamma > 0$ telle que :

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{1}{k} - \ln n \right) = \gamma$$

a) Soit g_n la fonction définie sur \mathbb{R}_+ par $g_n(u) = 1 - \left(1 - \frac{1}{2^u}\right)^{n-1}$. Montrer que pour tout $k \in \mathbb{N}^*$:

$$a_k \leqslant \int_{k-1}^k g_n(u) du \leqslant a_{k-1}$$

- b) En déduire, pour tout entier $q \ge 2$, un encadrement de $\int_0^q g_n(u)du$ (*).
- c) Montrer que pour tout n de \mathbb{N}^* , $\int_0^{+\infty} (1 (1 e^{-t})^n) dt$ converge. On note I_n cette intégrale.
- d) Pour tout n de \mathbb{N}^* , calculer $I_{n+1} I_n$. En déduire que, pour tout n de \mathbb{N}^* , $I_n = \sum_{k=1}^n \frac{1}{k}$.
- e) En effectuant le changement de variable, $t=u\ln 2$ dans l'intégrale de l'encadrement (*), montrer que :

$$E(X_n) - 1 \leqslant \frac{I_{n-1}}{\ln 2} \leqslant E(X_n).$$

f) Calculer $\lim_{n \to +\infty} \frac{E(X_n)}{\ln n}$.

SOLUTION DE L'EXERCICE 4.9

1. a) Soit $s \in \mathbb{N}^*$ fixé. On a : $0 < \frac{1}{2^s} < 1$. Donc la série de terme général $(\frac{1}{2^s})^k$ est une série géométrique convergente. b) Soit $k \in \mathbb{N}$.

$$a_k = 1 - \left(1 - \frac{1}{2^k}\right)^{n-1} = 1 - \sum_{i=0}^{n-1} \binom{n-1}{i} \left(\frac{-1}{2^k}\right)^i = \sum_{i=1}^{n-1} \binom{n-1}{i} \left(\frac{-1}{2^k}\right)^i$$

Ainsi, a_k est la somme finie de termes généraux de séries absolument convergentes et est le terme général d'une telle série.

c) Soit
$$q > 1$$
. On a $\sum_{k=1}^{q} k(a_{k-1} - a_k) = \sum_{k=1}^{q} ((k-1)a_{k-1} - ka_k) + \sum_{k=1}^{q} a_{k-1} = -qa_q + \sum_{k=0}^{q-1} a_k$. On sait déjà que $\sum_{k\geqslant 0} a_k$ converge.

De plus,
$$|qa_q| = \left|\sum_{i=1}^{n-1} \binom{n-1}{i} (-1)^i \frac{q}{2^{qi}}\right| \leqslant \sum_{i=1}^{n-1} \binom{n-1}{i} \frac{q}{2^q} \leqslant 2^{n-1} \frac{q}{2^q}.$$

Donc $\lim_{q \to +\infty} q a_q = 0$. La série de terme général $k(a_{k-1} - a_k)$ est absolument convergente et de somme $\sum_{k=0}^{+\infty} a_k$.

2. a) On a $g_n'(u) = -\ln 2 \times \left(\frac{1}{2}\right)^u (n-1) \left(1 - \left(\frac{1}{2}\right)^u\right)^{n-2} < 0$. Donc g_n est strictement décroissante sur \mathbb{R}^+ . Le reste est classique.

- b) On somme de k=1 à k=q pour obtenir $\sum_{k=1}^q a_k \leqslant \int_0^q g_n(u) du \leqslant \sum_{k=0}^{q-1} a_k$.
- c) Soit n de \mathbb{N}^* . La fonction que l'on intègre est continue sur \mathbb{R}_+ . On développe la puissance avec la formule du binôme. Il vient

$$1 - (1 - e^{-t})^n = \sum_{k=1}^n (-1)^k \binom{n}{k} e^{-kt}$$

On obtient ainsi une somme finie de fonctions dont chacune admet une intégrale convergente.

d) Un calcul facile donne $I_{n+1} - I_n = \frac{1}{n+1}$. Donc

$$I_n = \sum_{k=1}^{n-1} (I_{k+1} - I_k) + I_1 = \sum_{k=1}^{n-1} \frac{1}{k+1} + I_1 = \sum_{k=0}^{n-1} \frac{1}{k+1}$$

 $car I_1 = 1.$

e) On a:

$$I = \int_0^q g_n(u)du = \int_0^q 1 - \left(1 - \frac{1}{2^u}\right)^{n-1} du = \int_0^q 1 - e^{(n-1)\ln(1 - \frac{1}{2^u})} du.$$

On pose $t = u \ln 2$. Donc $I = \frac{1}{\ln 2} \int_0^{q \ln 2} 1 - (1 - e^{-t})^{n-1} dt$. On fait tendre q vers $+\infty$ et on obtient, avec $a_0 = 1$:

$$\sum_{k=1}^{+\infty} a_k \leqslant \frac{I_{n-1}}{\ln 2} \leqslant \sum_{k=0}^{+\infty} a_k \Leftrightarrow E(X_n) - a_0 \leqslant \frac{I_{n-1}}{\ln 2} \leqslant E(X_n) \Leftrightarrow 1 \leqslant \frac{\ln 2 E(X_n)}{I_{n-1}} \leqslant 1 + \frac{\ln 2}{I_{n-1}}$$

Par le préambule de la question 2

$$\lim_{n \to +\infty} (I_{n-1} - \ln(n-1)) = \gamma \text{ et } \lim_{n \to +\infty} \frac{\ln 2E(X_n)}{I_{n-1}} = 1$$

f) Finalement

$$\lim_{n \to +\infty} \frac{E(X_n)}{\ln n} = \frac{1}{\ln 2}$$

EXERCICE 4.10

Pour toute matrice $A \in \mathcal{M}_3(\mathbb{R})$, on considère les ensembles suivants :

$$E_1(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \text{ telles que } AM = M \}$$

$$E_2(A) = \{ M \in \mathcal{M}_3(\mathbb{R}) \text{ telles que } A^2M = AM \}$$

On note I la matrice identité de $\mathcal{M}_3(\mathbb{R})$.

- 1. Montrer que $E_1(A)$ et $E_2(A)$ sont des sous-espaces vectoriels de $\mathcal{M}_3(\mathbb{R})$.
- 2. a) Montrer que si A est inversible, alors $E_1(A) = E_2(A)$.
- b) Déterminer $E_1(A)$ lorsque A-I est inversible.

- 3. On considère la matrice $C = \begin{pmatrix} 3 & -2 & -1 \\ 1 & 0 & -1 \\ 2 & -2 & 0 \end{pmatrix}$.
- a) Déterminer les valeurs propres et les vecteurs propres de C.
- b) Determiner une matrice inversible P et une matrice diagonale D telles que $C = PDP^{-1}$ (les coefficients diagonaux de D sont rangés dans l'ordre croissant).
- 4. Soit $M \in \mathcal{M}_3(\mathbb{R})$ et $N = P^{-1}M$.
- a) Montrer que $M \in E_1(C)$ si et seulement si $N \in E_1(D)$.
- b) Déterminer $E_1(D)$.
- c) En déduire la dimension de $E_1(C)$.

- 1. Question élémentaire.
- 2. a) On a l'inclusion $E_1(A) \subseteq E_2(A)$. Si A est inversible, on multiplie par A^{-1} à gauche pour obtenir l'inclusion réciproque
- b) On remarque que $M \in E_1(A) \iff (A-I)M = 0$. Donc A-I inversible $\implies E_1(A) = \{0\}$.
- 3. a) Les valeurs propres de la matrice C sont 0, 1, 2 de vecteurs propres associés $\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.
- b) La matrice diagonale est $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ et la matrice P est constituée des vecteurs propres calculés précédemment.
- 4. a) On a:

$$CM = M \Leftrightarrow PDP^{-1}M = M \Leftrightarrow DP^{-1}M = P^{-1}M \Leftrightarrow DN = N$$

b) On pose :
$$N=\left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{array}\right)$$
. On a alors :

$$DN = \left(\begin{array}{ccc} 0 & 0 & 0 \\ a' & b' & c' \\ 2a'' & 2b'' & 2c'' \end{array} \right) = \left(\begin{array}{ccc} a & b & c \\ a' & b' & c' \\ a'' & b'' & c'' \end{array} \right) \Leftrightarrow N = \left(\begin{array}{ccc} 0 & 0 & 0 \\ a' & b' & c' \\ 0 & 0 & 0 \end{array} \right)$$

On remarque que $E_1(D)$ est un espace de dimension 3.

c) On vérifie que l'application $M \to N = P^{-1}M$ est un isomorphisme de $E_1(C)$ sur $E_1(D)$ (c'est implicitement fait dans la question 4. a). Ainsi dim $E_1(C) = 3$.

EXERCICE 4.11

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) . Soit X une variable aléatoire réelle. Pour $n \in \mathbb{N}^*$, on appelle moment d'ordre n de X, le réel $m_n(X) = E(X^n)$, lorsque ce réel existe.

On note $M_X(t) = E(e^{tX})$ pour les réels t pour lesquels cette espérance existe.

- 1. Soit $\lambda > 0$.
- a) Déterminer $M_X(t)$ lorsque X suit la loi de Poisson de paramètre λ .
- b) Pour n entier supérieur ou égal à 1, soit X_1, \ldots, X_n, n variables aléatoires indépendantes, de même loi de Bernoulli de paramètre λ/n . On pose $S_n = \sum_{i=1}^n X_i$.

Déterminer $M_{S_n}(t)$, puis $\lim_{n\to+\infty} M_{S_n}(t)$. Que constate-t-on?

- 2. Déterminer $M_X(t)$ lorsque X suit la loi normale $\mathcal{N}(0,1)$.
- 3. a) Calculer $M_X(t)$ lorsque X suit la loi uniforme sur [0,1].
- b) Dans cette question, X_n suit la loi uniforme sur [1, n] et $Y_n = \frac{1}{n}X_n$ $(n \in \mathbb{N}^*)$. Déterminer $M_{Y_n}(t)$, puis $\lim_{n \to +\infty} M_{Y_n}(t)$. Que constate-t-on?

SOLUTION DE L'EXERCICE 4.11

1. a) Utilisons les définitions données. Pour tout réel t, on a :

$$M_X(t) = E(e^{tX}) = e^{-\lambda} \sum_{k \ge 0} e^{tk} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k \ge 0} \frac{(e^t \lambda)^k}{k!} = e^{-\lambda} \times e^{\lambda e^t}$$

b) On sait que S_n suit la loi binomiale de paramètres $(n, \lambda/n)$. Ainsi :

$$M_{S_n}(t) = \sum_{k=0}^n e^{tk} \binom{n}{k} \left(\frac{\lambda}{n}\right)^k \left(1 - \frac{\lambda}{n}\right)^{n-k} = \left(\frac{\lambda}{n}e^t + 1 - \frac{\lambda}{n}\right)^n$$

Ainsi, en utilisant un DL de la fonction ln à l'ordre 1, il vient :

$$M_{S_n}(t) = \exp\left(n\ln\left(1 + \frac{\lambda}{n}(e^t - 1)\right)\right) \underset{n \to +\infty}{\to} e^{\lambda(e^t - 1)} = M_X(t)$$

2. On suppose que $X \hookrightarrow \mathcal{N}(0,1)$. Alors :

$$M_X(t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{tx} e^{-t^2/2} dt = e^{x^2/2} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-(t-x)^2/2} dt = e^{x^2/2}$$

- 3. a) Un calcul simple donne $E(e^{tX}) = \int_0^1 e^{tu} du = \frac{e^t 1}{t}$ avec prolongement par continuité en 0.
- b) De nouveau, comme $Y_n(\Omega) = \{1/n, 2/n, \dots, n/n\}$, on a :

$$M_{Y_n}(t) = E(e^{X_n/n}) = \sum_{k=1}^n e^{tk/n} P(X_n = k) = \frac{1}{n} \sum_{k=1}^n e^{tk/n} = \frac{1}{n} e^{t/n} \times \frac{e^t - 1}{e^{t/n} - 1} \underset{n \to +\infty}{\to} \frac{e^t - 1}{t} = E(e^{tX})$$

EXERCICE 4.12

Toutes les variables aléatoires de cet exercice sont définies sur un espace probabilisé (Ω, \mathcal{A}, P) .

- 1. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x}e^{-e^{-x}}$. Montrer que f est une densité (on pourra utiliser le changement de variable $u = e^{-x}$).
- 2. Soit X une variable aléatoire de densité f.
- a) Déterminer la fonction de répartition F de X.
- b) À l'aide d'un développement limité, déterminer un fonction h telle :

$$\lim_{x \to +\infty} \frac{P(X \geqslant x)}{h(x)} = 1.$$

- 3. Soit U une variable aléatoire suivant la loi uniforme sur [0,1] et $V=-\ln(-\ln U)$. Déterminer la loi de V.
- 4. Soit (Y_n) une suite de variables aléatoires indépendantes de loi exponentielle de paramètre 1. Déterminer pour tout $x \in \mathbb{R}_+$:

$$\lim_{n \to +\infty} P(\max(Y_1, \dots, Y_n) - \ln n \leqslant x)$$

1.) La fonction f est continue sur \mathbb{R} et positive. Par abus d'écriture, on a :

$$\int_{-\infty}^{+\infty} e^{-x} e^{-e^{-x}} dx = [e^{-e^{-x}}]_{-\infty}^{+\infty} = 1.$$

On fera attention a effectuer le changement de variable sur une segment.

- 2.a) On détermine F_X en intégrant f. Il vient $\forall x \in \mathbb{R}, F_X(x) = e^{-e^{-x}}$.
- b) Lorsque x tend vers $+\infty$, e^{-x} tend vers 0. Le développement limité de e^{u} en 0 est $e^{u}=1+u+o(u)$.

$$P(X \ge x) = 1 - F(x) = 1 - e^{-e^{-x}} = 1 - (1 - e^{-x} + o(e^{-x})) = e^{-x} + o(e^{-x})$$

On pose donc $h(x) = e^{-x}$.

3. On utilise la méthode de la fonction de répartition. On a $V(\Omega) = \mathbb{R}$ et pour tout x réel, on a :

$$P(V \le x) = P(-\ln(-\ln(U)) \le x) = P(-\ln(U) \ge e^{-x}) = P(\ln(U) \le -e^{-x}) = P(U \le e^{-e^{-x}}) = F(x)$$
 Ainsi, V suit la loi de X .

4. Calculons la loi de $Z_n = \max(Y_1, \dots, Y_n)$ en utilisant la même méthode. On a $[Z_n \leqslant x] = \bigcap_{i=1}^n [Y_i \leqslant x]$ et par indépendance, il vient :

$$P([Z_n \le x]) = \prod_{i=1}^n P(Y_i \le x) = F_Y(x)^n = \begin{cases} 0 & \text{si } x < 0 \\ (1 - e^{-x})^n & \text{si } x \ge 0 \end{cases}$$

Ainsi, pour tout réel x, pour n assez grand tel qu $\ln n + x > 0$, on a :

$$P(Z_n - \ln n \le x) = P(Z_n \le \ln n + x) = (1 - e^{-\ln(n) - x})^n = \left(1 - \frac{e^{-x}}{n}\right)^n$$

Un dernier développement limité permet d'écrire :

$$\exp\left(n\ln\left(1-\frac{e^{-x}}{n}\right)\right) = \exp\left(n\left(-\frac{e^{-x}}{n} + o\left(\frac{1}{n}\right)\right)\right) \to e^{-e^{-x}}$$

EXERCICE 4.13

Deux urnes U_1 et U_2 contiennent à elles deux 2 boules indiscernables. À chaque étape, on choisit de manière équiprobable un nombre de [1, 2].

- Si ce nombre est inférieur ou égal au nombre de boules contenues dans U_1 , on prend une boule de U_1 que l'on met dans U_2 .
- Si ce nombre est strictement supérieur au nombre de boules contenues dans U_1 , on prend une boule de U_2 que l'on met dans U_1 .

On suppose que l'expérience est modélisée par un espace probabilisé (Ω, \mathcal{A}, P) .

Pour tout $p \in \mathbb{N}$, on note Z_p la variable aléatoire égale au nombre de boules contenues dans U_1 à l'étape p. Ainsi Z_0 est la variable égale au nombre de boules initialement contenues dans U_1 , Z_1 est la variable égale au nombre de boules contenues dans U_1 après une étape, etc.

1. On pose :
$$Y_p = \begin{pmatrix} P(Z_p = 0) \\ P(Z_p = 1) \\ P(Z_p = 2) \end{pmatrix}$$
. Déterminer une matrice $A \in \mathcal{M}_3(\mathbb{R})$ telle que pour tout $p \in \mathbb{N}$, $Y_{p+1} = AY_p$.

Soit A la matrice de $\mathcal{M}_3(\mathbb{R})$ définie par :

$$A = \left(\begin{array}{ccc} 0 & \frac{1}{2} & 0\\ 1 & 0 & 1\\ 0 & \frac{1}{2} & 0 \end{array}\right)$$

- 2. Montrer que 1 et -1 sont valeurs propres de A.
- 3. Déterminer les valeurs propres et les sous-espaces propres de A. La matrice A est-elle diagonalisable?
- 4. On suppose $Y_0 = \begin{pmatrix} 1/4 \\ 1/2 \\ 1/4 \end{pmatrix}$. Pour tout $k \in [0, 2]$, étudier l'existence d'une limite pour $P(Z_p = k)$ lorsque p tend vers $+\infty$.

SOLUTION DE L'EXERCICE 4.13

- 1. Supposons qu'à l'étape p, U_1 contienne :
- 0 boule. À l'étape suivante, U_1 contiendra une boule.
- 1 boule. Au vu de l'expérience, à l'étape suivante U_1 contiendra 0 boule avec la probabilité 1/2 et 2 boules avec la probabilité 1/2, puisque la probabilité de choisir 1 est 1/2 tout comme la probabilité de choisir 2.
- 2 boules. À l'étape suivante, U_1 contiendra une boule.

Appliquons la formule des probabilités totales ; pour $k \in \llbracket 0, 2 \rrbracket$:

$$P(Z_{p+1}=k) = P_{[Z_p=0]}(Z_{p+1}=k)P(Z_p=0) + P_{[Z_p=1]}(Z_{p+1}=k)P(Z_p=1) + P_{[Z_p=2]}(Z_{p+1}=k)P(Z_p=2) + P_{[Z_p=0]}(Z_{p+1}=k)P(Z_p=0) + P_{[Z_p=0]}(Z_p=0) + P_{[Z_p=0]}(Z$$

Ainsi:

$$\begin{pmatrix} P(Z_{p+1}=0) \\ P(Z_{p+1}=1) \\ P(Z_{p+1}=2) \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & 0 \\ 1 & 0 & 1 \\ 0 & \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} P(Z_p=0) \\ P(Z_p=1) \\ P(Z_p=2) \end{pmatrix}$$

Ceci correspond à la matrice A de la question suivante.

- 2. Par résolution de système linéaire : $\begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$ (resp. $\begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}$) est vecteur propre pour la valeur propre 1 (resp. -1).
- 3. Les lignes L_1 et L_3 de A sont égales, donc la matrice A n'est pas inversible et 0 est valeur propre de A.

Un calcul de vecteurs propres montre que $E_0 = \operatorname{Vect} \left(\begin{array}{c} 1 \\ 0 \\ -1 \end{array} \right)$.

Ainsi, la matrice A est diagonalisable.

4. Pour tout p on a $Y_p = Y_0$, donc les suites à examiner sont constantes, donc convergentes.

EXERCICE 4.14

1. Déterminer les valeurs de x réel pour lesquelles la série $\sum_{n\geqslant 1}\frac{e^{-nx}}{\sqrt{n}}$ converge.

On note alors $f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}}$. On admet que la fonction f est continue sur son domaine de définition D.

2. Montrer que la fonction f est décroissante sur D.

- 3. Déterminer $\lim_{x \to +\infty} f(x)$.
- 4. Montrer que $\lim_{x\to 0^+} f(x) = +\infty$.
- 5. a) Soit $g: t \mapsto \frac{e^{-xt}}{\sqrt{t}}$. Montrer que pour tout $k \in \mathbb{N}^*$ et tout $t \in [k, k+1]$, on a : $g(k+1) \leqslant g(t) \leqslant g(k)$.
- b) En déduire que :

$$\lim_{x \to +\infty} \frac{1}{f(x)} \times \int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt = 1$$

c) En déduire que : $\lim_{x \to +\infty} f(x) \times \sqrt{x} = C$, où C est une constante réelle strictement positive.

SOLUTION DE L'EXERCICE 4.14

1. Pour x>0 $\lim_{n\to +\infty} n^2 \frac{e^{-nx}}{\sqrt{n}}=0$; ceci montre que la série converge.

Autre idée : $0 \le \frac{e^{-nx}}{\sqrt{n}} \le (e^{-x})^n$ et la série géométrique majorante converge.

Pour $x \leq 0$, $\lim_{n \to +\infty} n \frac{e^{-nx}}{\sqrt{n}} = +\infty$; ceci montre que la série diverge. Autre idée : pour x > 0 la série diverge grossièrement et pour x = 0 c'est une série de Riemann divergente.

Le domaine de définition de la fonction f est donc \mathbb{R}^{+*} .

- 2. De manière évidente, pour tout $n \geqslant 1$, $x \leqslant y \Rightarrow e^{-nx} \geqslant e^{-ny}$. Donc, par sommation de quantités positives, on obtient : $f(x) \ge f(y)$.
- 3. Comme $n \ge 1$, on peut écrire : $0 < f(x) = \sum_{n=1}^{+\infty} \frac{e^{-nx}}{\sqrt{n}} \le \sum_{n=1}^{+\infty} e^{-nx} = \frac{e^{-x}}{1 e^{-x}}$.

Or
$$\lim_{x \to +\infty} \frac{e^{-x}}{1 - e^{-x}} = 0$$
. Donc $\lim_{x \to +\infty} f(x) = 0$

4. La limite en 0 est finie ou vau
t $+\infty,$ car f est décroissante.

Or, comme tous les termes de la série sont positifs, on a : $f(x) \ge \sum_{i=1}^{N} \frac{e^{-nx}}{\sqrt{n}}$.

Par l'absude si f convergeait, en passant à la limite, on aurait : $\forall N$, $\lim_{x\to 0^+} f(x) \geqslant \sum_{i=1}^N \frac{1}{\sqrt{n}}$.

Ceci est absurde car les sommes partielles de la série $\sum \frac{1}{\sqrt{n}}$ divergent vers $+\infty$.

Or, $\lim_{x\to 0} g_N(x) = \sum_{n=1}^{N} \frac{1}{\sqrt{n}}$ qui est la somme partielle d'une série divergente.

Soit A > 0. Il existe N_0 tel que pour tout $N \ge N_0$, $\sum_{n=1}^{N} \frac{1}{\sqrt{n}} > 2A$ et donc un voisinage de 0 tel que pour x dans ce voisinage, $g_N(x) > A$. Donc, pour x dans ce voisinage, f(x) > A, ce qui est la définition de $\lim_{x \to 0} f(x) = +\infty$.

5. a) Soit x > 0 fixé. La fonction $g: t \mapsto \frac{e^{-xt}}{\sqrt{t}}$ est positive et décroissante sur \mathbb{R}^{+*} . Donc si $t \in [k, k+1], g(k+1) \leqslant g(t) \leqslant g(k)$. Ainsi : $\int_{k}^{k+1} g(k+1) dt \leqslant \int_{k}^{k+1} g(t) dt \leqslant \int_{k}^{k+1} g(k) dt$.

b) La série $\sum g(k)$ étant convergente, toute comme l'intégrale $\int_{t}^{+\infty}g(t)dt$, il vient :

$$\sum_{k=2}^{+\infty} g(k) \leqslant \int_{1}^{+\infty} g(t)dt \leqslant \sum_{k=1}^{+\infty} g(k)$$

ou $f(x) - e^{-x} \le \int_1^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt \le f(x)$. Par la question précédente, on obtient :

$$\lim_{x \to 0} \frac{f(x)}{\int_{1}^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt} = 1 = \lim_{x \to 0} \frac{f(x)}{\int_{0}^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt}$$

par convergence de cette intégrale en 0.

c) Le changement de variable u=xt qui est linéaire donne :

$$\int_0^{+\infty} \frac{e^{-xt}}{\sqrt{t}} dt = \frac{1}{\sqrt{x}} \int_0^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = \frac{C}{\sqrt{x}}$$