BCE 2020

EXERCICE 1

Toutes les variables aléatoires introduites dans cet exercice sont supposées définies sur une même espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$.

Sous réserve d'existence, on note $\mathbb{E}(G)$ et $\mathbb{V}(G)$ respectivement l'espérance et la variance d'une variable aléatoire G définie sur $(\Omega, \mathcal{A}, \mathbb{P})$

Soit f la fonction définie sur \mathbb{R} par :

$$f(t) = \begin{cases} \frac{1}{\ln(2)(1+t)} & \text{si} \quad t \in [0,1] \\ 0 & \text{sinon} \end{cases}$$

- 1. Montrer que f est une densité de probabilité.

 Dans la suite de l'exercice, on note X une variable aléatoire de densité f
- 2. (a) Montrer que la variable aléatoire X admet une espérance et que $\mathbb{E}(X) = \frac{1 \ln(2)}{\ln(2)}$.
 - (b) En utilisant l'identité, valable pour tout z réel, $z^2 = z(1+z) z$, calculer $\mathbb{V}(Z)$.
- 3. Soit F la fonction de répartition de la variable aléatoire X.
 - (a) Déterminer pour tout x réel, F(x).
 - (b) Montrer que l'équation $F(x) = \frac{1}{2}$, d'inconnue x; admet une unique solution x_0 que l'on déterminera.
 - (c) Tracer la courbe représentative de F dans le plan rapporté à un repère orthonormé (on donne $\ln 2 \approx 0, 7$).
- 4. Soit $x \in [0, 2]$.
 - (a) Etablir l'équivalence suivante : $f(t)f(x-t) \neq 0 \Leftrightarrow \max(0,x-1) \leqslant t \leqslant \min(1,x)$.
 - (b) On note ϕ_x la fonction définie sur \mathbb{R} par :

$$\phi_x(t) = \begin{cases} \frac{1}{(1+t)(1+x-y)} & \text{si} & \max(0, x-1) \leqslant t \leqslant \min(1, x) \\ 0 & \text{sinon} \end{cases}$$

On admet l'existence d'un unique couple (A, B) de réels indépendants de t pour lesquels on a :

$$\forall t \in [\max(0, x - 1), \min(1, x)], \frac{1}{(1 + t)(1 + x - t)} = \frac{A}{1 + t} + \frac{B}{1 + x - t}$$

Montrer que $A = B = \frac{1}{x+2}$

5. Soit Y une variable aléatoire indépendante de X, de même loi que X et de densité f. On pose Z = X + Y, et on admet que Z est une variable aléatoire à densité. On note h une densité de la variable aléatoire Z et on admet que h est donnée par :

$$\forall x \in \mathbb{R}, h(x) = \int_{-\infty}^{+\infty} f(t)f(x-t)dt$$

1

(a) Calculer $\mathbb{E}(Z)$ et $\mathbb{V}(Z)$.

(b) Montrer que:

$$h(x) = \begin{cases} \frac{2\ln(1+x)}{(\ln 2)^2(x+2)} & \text{si} & 0 \le x \le 1\\ \frac{2(\ln 2 - \ln x)}{(\ln 2)^2(x+2)} & \text{si} & 1 < x \le 2\\ 0 & \text{sinon} \end{cases}$$

EXERCICE 2

Dans tout l'exercice, on considère une suite $(u_n)_{n\in\mathbb{N}^*}$ de réels tous non nuls et on associe à cette suite $(u_n)_{n\in\mathbb{N}^*}$ la suite $(p_n)_{n\in\mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, p_n = u_1 \times u_2 \times \dots \times u_n = \prod_{k=1}^n u_k$$

- Si la suite $(p_n)_{n\in\mathbb{N}^*}$ converge vers une limite finie p non nulle, on dit que la suite $(p_n)_{n\in\mathbb{N}^*}$ est bien convergente.
- Si la suite $(p_n)_{n\in\mathbb{N}^*}$ converge vers 0, on dit que la suite $(p_n)_{n\in\mathbb{N}^*}$ est convergente.
- Si la suite $(p_n)_{n\in\mathbb{N}^*}$ n'est ni convergente ni bien convergente, on dit qu'elle est divergente.
- 1. Dans chacun des cas suivants, exprimer p_n en fonction de n et en déduire la nature (convergente, bien convergente ou divergente) de la suite $(p_n)_{n\in\mathbb{N}^*}$
 - (a) $\forall n \in \mathbb{N}^*, u_n = 1 + \frac{1}{n}$.
 - (b) $\forall n \in \mathbb{N}^*, u_n = 1 \frac{1}{n+1}$.
 - (c) $\forall n \in \mathbb{N}^*$, $u_n = 1 \frac{1}{(n+1)^2}$.
- 2. On suppose dans cette question que la suite $(u_n)_{n\in\mathbb{N}^*}$ est définie par :

$$u_1 = 1$$
 et $\forall n \ge 2, u_n = 1 + \frac{(-1)^n}{n}$

- (a) Etablir, pour tout entier naturel n non nul, l'égalité suivante : $p_{2n} = 1 + \frac{1}{2n}$.
- (b) Déterminer les limites respectives des suites $(p_{2n})_{n\in\mathbb{N}^*}$ et $(p_{2n+1})_{n\in\mathbb{N}^*}$. On admet alors que la suite $(p_n)_{n\in\mathbb{N}^*}$ est bien convergente.
- 3. Soit a un réel donné tel que 0 < a < 1. On suppose dans cette question que la suite $(u_n)_{n \in \mathbb{N}^*}$ est définie par :

$$\forall n \in \mathbb{N}^*, u_n = 1 + a^{2^n}$$

On prendre garde au fait que a^{2^n} désigne la valeur de $a^{(2^n)}$ qui est distinct de $(a^2)^n=a^{2n}$.

2

(a) Etablir la relation suivante :

$$\forall n \geqslant 1, (1 - a^2)p_n = 1 - a^{2^{n+1}}$$

- (b) Montrer que pour tout entier $n \ge 1$, on a $a^{2^n} \le a^n$.
- (c) En déduire la valeur de $p = \lim_{n \to +\infty} p_n$ en fonction de a.

4. Soit $(a_n)_{n\in\mathbb{N}^*}$ une suite de réels positifs. On suppose dans cette question que la suite $(u_n)_{n\in\mathbb{N}^*}$ est définie par :

$$\forall n \in \mathbb{N}^*, u_n = 1 + a_n$$

Pour tout entier $n \geqslant 1$, on pose $T_n = \frac{a_n}{p_n}$.

- (a) Exprimer, pour tout entier $n \ge 2$, T_n en fonction de p_n et p_{n-1} .
- (b) On suppose que la suite $(p_n)_{n\in\mathbb{N}^*}$ est bien convergente de limite p>0.

Montrer que
$$\sum_{n=1}^{+\infty} T_n = 1 - \frac{1}{p}.$$

(c) On suppose que la suite $(p_n)_{n\in\mathbb{N}^*}$ est divergente.

Montrer que
$$\sum_{n=1}^{+\infty} T_n = 1$$
.

PROBLEME

Dans ce problème, on désigne par n et p des entiers naturels tels que $n \ge 1$ et $p \ge 2$.

Toutes les matrices considérées ici sont à coefficients réels.

Soit A une matrice carrée $p \times p$.

Pour tout $(i, j) \in [1, p]^2$, on note $a_{i,j}$ le coefficient situé à l'intersection de la i^e ligne et de la j^e colonne de la matrice A.

On rappelle que la trace de A, notée $\operatorname{tr}(A)$, est définie par : $\operatorname{tr}(A) = \sum_{i=1}^{p} a_{i,i}$.

Si $\lambda_1, \lambda_2, ..., \lambda_p$ sont des réels, on note $\operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_p)$ la matrice $p \times p$ diagonale :

$$\operatorname{diag}(\lambda_{1}, \lambda_{2}, ..., \lambda_{p}) = \begin{pmatrix} \lambda_{1} & 0 & 0 & \cdots & 0 \\ 0 & \lambda_{2} & 0 & \cdots & 0 \\ 0 & 0 & \lambda_{3} & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda_{p} \end{pmatrix}$$

Dans la première partie, on exprime la trace de la puissance n^e d'une matrice diagonale, en fonction des valeurs propres de cette matrice.

Dans la seconde partie, on étude les colorations d'une figure.

PARTIE I - Expression de la trace de A^n si A diagonalisable

A- Etude d'un exemple

Soit
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

- 1. Vérifier que les valeurs propres de A sont -1 et 2.
- 2. (a) Montrer que le vecteur $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$ constitue une base du sous-espace propre de A associé à la valeur $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$

propre 2 et que les vecteurs $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ et $\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ constituent une base du sous-espace propre de A associé à la valeur propre -1.

- (b) En déduire que la matrice A est diagonalisable. On pose alors D = diag(-1, -1, 2).
- 3. On note P la matrice 3×3 définie par $P = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{pmatrix}$.

On admet que $P^3 - 2P^2 + 3P - 3I = 0$, où I est la matrice identité de $\mathcal{M}_3(\mathbb{R})$ (on ne demande pas de vérifier cette relation).

- (a) Calculer la matrice P^{-1} , inverse de la matrice P.
- (b) Justifier que pour tout entier $n \ge 1$, on a $A^n = PD^nP^{-1}$.
- (c) En déduire l'expression de A^n en fonction de n.
- (d) Vérifier, que pour tout entier $n \ge 1$, on a $\operatorname{tr}(A^n) = \operatorname{tr}(D^n) = 2(-1)^n + 2^n$.

B- Cas général

Dans cette section, A désigne une matrice $p \times p$ supposée diagonalisable.

4. Question préliminaire :

Montrer que si U et V sont deux matrices $p \times p$, alors tr(UV) = tr(VU).

On rappelle que A est diagonalisable et donc qu'il existe une matrice diagonale $D = \operatorname{diag}(\lambda_1, \lambda_2, ..., \lambda_p)$ avec $\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_p$ et une matrice $p \times p$ inversible P telles que $A = PDP^{-1}$.

5. Justifier que pour tout $n \ge 1$:

$$\operatorname{tr}(A^n) = \operatorname{tr}(D^n) = \lambda_1^n + \lambda_2^n + \ldots + \lambda_p^n = \sum_{i=1}^p \lambda_i^n$$

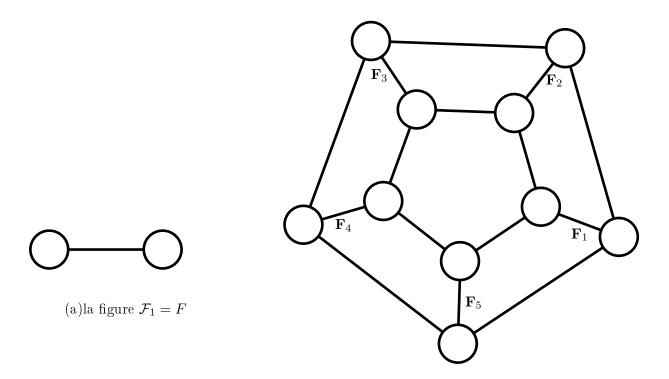
Partie II - Une figure colorée

Dans la suite de ce problème, on étudie les colorations d'une figure notée \mathcal{F}_n pour $n \geqslant 1$.

La figure \mathcal{F}_1 ou plus simplement F est constituée de deux points ou sommets reliés entre eux.

Plus généralement, la figure \mathcal{F}_n est constituée de n copies de la figure F notées $F_1, F_2, ..., F_n$ reliées entre elles et disposées de sorte qu'elles forment deux polygones à n sommets.

La FIGURE 1 ci-dessous représente les figures F et $\mathcal{F}_5=(F_1,F_2,F_3,F_4,F_5)$



(b) la figure \mathcal{F}_5

Figure 1 – deux figures \mathcal{F}_n $(n=1 \ \mathrm{et} \ n=5)$

On dispose par ailleurs de trois couleurs, à savoir : Blanc, notée B, Gris notée G et noir notée N. Chaque sommet de \mathcal{F}_n est coloré par une couleur choisie parmi B, G, N.

La coloration de la figure \mathcal{F}_n sera dite **correcte** si deux sommets reliés dans la figure sont de couleurs différentes.

La FIGURE 2 ci-dessous représente une coloration correcte de $\mathcal{F}_4 = (F_1, F_2, F_3, F_4)$.

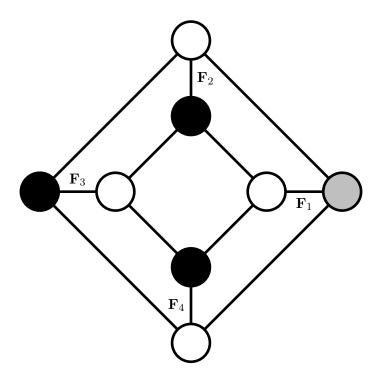


Figure 2 – une coloration correcte de \mathcal{F}_4

Par exemple, les colorations correctes de F sont :

$$(B,G), (B,N), (G,N), (G,B), (N,B) \text{ et } (N,G).$$

On notera que les colorations (B, G) et (G, B) (par exemple) sont différentes; ceci signifie que dans une coloration de la figure \mathcal{F}_n , les sommets sont supposés distingués les uns des autres.

Dans la suite de ce problème, on se donne une partie non vide $C = \{c_1, c_2, ..., c_p\}$ avec $2 \le p \le 6$, de l'ensemble (B, G), (B, N), (G, N), (G, B), (N, B), (N, G), des colorations correctes de F.

Pour obtenir une coloration correcte de la figure $\mathcal{F}_n = (F_1, F_2, ..., F_n)$, on commence par choisir des colorations correctes de chacune des copies F_i $(1 \le i \le n)$ dans l'ensemble C.

On dit que deux éléments $c = (K_1, K_2)$ et $c' = (K'_1, K'_2)$ de C sont **compatibles** si $K_1 \neq K'_1$ et $K_2 \neq K'_2$. Par exemple, c = (B, N) et c' = (N, G) sont compatibles car $B \neq N$ et $N \neq G$; par contre, c = (B, N) et c' = (B, G) ne sont pas compatibles (même première composante B).

Il en résulte que la coloration de la figure $\mathcal{F} = (F_1, F_2, ..., F_n)$ sera correcte si les colorations F_1 et F_2 , F_2 et F_3 , ..., F_{n-1} et F_n et aussi F_n et F_1 sont compatibles.

A- Probabilités

Dans cette section, on suppose $n \geq 2$ et on admet qu'il existe un espace probabilisé $(\Omega, \mathcal{A}, \mathbb{P})$ tel que Ω est l'ensemble des figures \mathcal{F}_n colorées (correctes ou non), avec $\mathcal{F}_n = (F_1, F_2, ..., F_n)$ et \mathbb{P} est telle que $F_1, F_2, ..., F_n$ sont colorées par un élément de C avec équiprobabilité et indépendance.

- 6. Pour une coloration c_i de F_1 avec $1 \le i \le p$, l'entier i désigne **l'indice** de cette coloration. Quelle est la loi suivie par la variable aléatoire X donnant l'indice de la coloration de F_1 pour la figure $\mathcal{F}_n = (F_1, F_2, ..., F_n)$? Quelles sont l'espérance et la variance de X?
- 7. Montrer que la variable aléatoire Y donnant le nombre de F_i avec $1 \leq i \leq n$ de la figure $\mathcal{F}_n = (F_1, F_2, ..., F_n)$ ayant pour coloration l'élément c_1 de C suit une loi usuelle que l'on déterminera.

B - Matrice de compatibilité et nombre de colorations correctes

On introduit la matrice $p \times p$ de compatibilité associée à C, notée A_C ou tout simplement A dont les coefficients sont tels que :

$$\forall (i,j) \in [1,p]^2, a_{i,j} = \begin{cases} 1 & \text{si } c_i \text{ et } c_j \text{ sont compatibles} \\ 0 & \text{si } c_i \text{ et } c_j \text{ ne sont pas compatibles} \end{cases}$$

Exemple: dans le cas de la FIGURE 2 ci-dessus, on a donc n=4 et on prend p=3 avec:

 $c_1 = (B,G)$ (coloration de F_1), $c_2 = (N,B)$ (coloration de F_2 et F_4) et $c_3 = (B,N)$ (coloration de F_3) et donc $C = \{(B,G),(N,B),(B,N)\}$.

Il en résulte que
$$A_C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

(par exemple, (B, G) et (B, G) ne sont pas compatibles donc $a_{1,1} = 0$ et (N, B) et (B, N) sont compatibles donc $a_{2,3} = 1$).

Dans la suite de cette section, on note $u_n(C)$ le nombre de colorations correctes de la figure \mathcal{F}_n utilisant les colorations de C.

Le but de la fin de cette section est de déterminer une expression de $u_n(C)$ pour $n \ge 2$ utilisant la matrice A_C .

8. Un exemple.

Dans cet exemple, $c_1 = (B, G), c_2 = (G, N), c_3 = (B, N)$; ainsi $C = \{(B, G), (G, N), (B, N)\}.$

- (a) Montrer que $A_C = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- (b) Déterminer A_C^2 et en déduire A_C^n pour $n \ge 2$. (on distinguera suivant la parité de n).
- (c) Déterminer $u_2(C)$ en représentant les figures \mathcal{F}_2 correctement colorées correspondantes et déterminer aussi $u_3(C)$.
- (d) Vérifier que $u_2(C) = \operatorname{tr}(A_C^2)$ et que $u_3(C) = \operatorname{tr}(A_C^3)$.

9. Cas général.

On revient au cas général et on se donne :

- une figure $\mathcal{F}_n = (F_1, F_2, ..., F_n)$ avec $n \ge 2$;
- un ensemble $C = \{c_1, c_2, ..., c_p\}$ de colorations correctes de F;
- la matrice de compatibilité $A = A_C$ associée à C.
- (a) Soient $c_{i_1}, c_{i_2}, ..., c_{i_n}$ des colorations choisies dans C.

Montrer qu'en affectant la coloration c_{i_j} à F_j pour $j \in [1, n]$, on obtient une bonne coloration de \mathcal{F}_n si et seulement si :

$$a_{i_1,i_2} \times a_{i_2,i_3} \times \dots \times a_{i_{n-1}} \times a_{i_n,i_1} = 1$$

- (b) En déduire que $u_n(C) = \operatorname{tr}(A_C^n)$.
- (c) Soit $n \ge 2$. Quelle est la probabilité pour qu'une figure $\mathcal{F}_n = (F_1, F_2, ..., F_n)$ choisie au hasard et telle que les colorations de chaque F_i $(1 \le i \le n)$ soient prises dans $C = \{(B, G), (G, N), (N, B)\}$, ait une coloration correcte?
- (d) Même question, les colorations de chaque F_i $(1 \le i \le n)$ étant prises cette fois dans l'ensemble $\{(B,G),(G,B),(B,N),(N,B)\}.$